214 research outputs found

    Dynamics of broken symmetry lambda phi^4 field theory

    Full text link
    We study the domain of validity of a Schwinger-Dyson (SD) approach to non-equilibrium dynamics when there is broken symmetry. We perform exact numerical simulations of the one- and two-point functions of lambda phi^4 field theory in 1+1 dimensions in the classical domain for initial conditions where < phi(x) > not equal to 0. We compare these results to two self-consistent truncations of the SD equations which ignore three-point vertex function corrections. The first approximation, which sets the three-point function to one (the bare vertex approximation (BVA)) gives an excellent description for < phi(x) > = phi(t). The second approximation which ignores higher in 1/N corrections to the 2-PI generating functional (2PI -1/N expansion) is not as accurate for phi(t). Both approximations have serious deficiencies in describing the two-point function when phi(0) > .4.Comment: 10 pages, 6 figure

    Ghost contributions to charmonium production in polarized high-energy collisions

    Full text link
    In a previous paper [Phys. Rev. D 68, 034017 (2003)], we investigated the inclusive production of prompt J/psi mesons in polarized hadron-hadron, photon-hadron, and photon-photon collisions in the factorization formalism of nonrelativistic quantum chromodynamics providing compact analytic results for the double longitudinal-spin asymmetry A_{LL}. For convenience, we adopted a simplified expression for the tensor product of the gluon polarization four-vector with its charge conjugate, at the expense of allowing for ghost and anti-ghosts to appear as external particles. While such ghost contributions cancel in the cross section asymmetry A_{LL} and thus were not listed in our previous paper, they do contribute to the absolute cross sections. For completeness and the reader's convenience, they are provided in this addendum.Comment: 5 page

    Coupled-cluster theory of a gas of strongly-interacting fermions in the dilute limit

    Full text link
    We study the ground-state properties of a dilute gas of strongly-interacting fermions in the framework of the coupled-cluster expansion (CCE). We demonstrate that properties such as universality, opening of a gap in the excitation spectrum and applicability of s-wave approximations appear naturally in the CCE approach. In the zero-density limit, we show that the ground-state energy density depends on only one parameter which in turn may depend at most on the spatial dimensionality of the system.Comment: 7 figure

    Electron-phonon coupling in semimetals in a high magnetic field

    Full text link
    We consider the effect of electron-phonon coupling in semimetals in high magnetic fields, with regard to elastic modes that can lead to a redistribution of carriers between pockets. We show that in a clean three dimensional system, at each Landau level crossing, this leads to a discontinuity in the magnetostriction, and a divergent contribution to the elastic modulus. We estimate the magnitude of this effect in the group V semimetal Bismuth.Comment: 2 figure

    Continuum coupled cluster expansion

    Full text link
    We review the basics of the coupled-cluster expansion formalism for numerical solutions of the many-body problem, and we outline the principles of an approach directed towards an adequate inclusion of continuum effects in the associated single-energy spectrum. We illustrate our findings by considering the simple case of a single-particle quantum mechanics problem.Comment: 16 pages, 1 figur
    • …
    corecore